Gloucester Point, VA — Professor Jeff Shields and colleagues at the
Virginia Institute of Marine Science have succeeded in their 15-year
effort to unravel the life history of Hematodinium, a single-celled
parasite that afflicts blue crabs and is of growing concern to
aquaculture operations and wild fisheries around the world.
Knowledge of the parasite's complex life cycle -- gained by rearing of
successive generations across a full year in a VIMS laboratory -- will
help guide efforts to understand the transmission of Hematodinium within
crab populations and shrimp farms, and to develop best practices for
the handling of animals within Virginia's fishery for wild-caught blue
crabs.
"Describing the entire life cycle of Hematodinium was an important
breakthrough for us," says Shields. "Having all stages in culture means
we can now really start picking the life cycle apart to learn what the
organism does and how it functions."
One important finding, says Shields, is "that we now know that the
development time in culture is around 40-50 days. That matches well with
cycles of infection that we see in the field, which we think occur in
relation to molting in the blue crab."
"We also now realize that the parasite is a broad host generalist," he
adds. "That's important to know for both modeling and management. You
can't just fish the blue crabs out of an area and expect to get rid of
the pathogen, as it's also present in a number of other host species,
including amphipods, fiddler crabs, spider crabs, mud crabs, and other
swimming crabs."
The team's achievement -- funded in part by a 5-year grant from the
National Science Foundation -- was reported in the journal Parasitology,
with Dr. Caiwen Li as lead author. Li authored the paper while a
post-doctoral researcher in Shield's Crustacean Diseases Laboratory on
the VIMS campus in Gloucester Point; he is now a professor at the
Chinese Academy of Sciences' Institute of Oceanology in Qingdao, China.
Hematodinium was first reported from the Eastern Seaboard in the
mid-1970s, and first noted in Virginia's blue crabs in the early 1990s.
During disease outbreaks, crab mortality can reach 50% in crab pots, and
75% in shedding facilities for soft-shell crabs on Virginia's Eastern
Shore. Infections are generally fatal with crabs dying from energy
depletion or disruption of bodily tissues. The disease is not harmful to
humans.
Dr. Hamish Small, an assistant research scientist in the Shield's Lab
at VIMS, began his career studying Hematodinium in lobsters in his
native Scotland. He says, "Hematodinium infections are now increasing in
frequency and are being encountered in new hosts and locations
worldwide."
Crab growers in China reported their first case of Hematodinium in 2004;
and, in 2008, other Chinese growers reported a Hematodinium outbreak in
shrimp -- the first time the disease has been noted in this popular
aquaculture organism.
The Chinese outbreaks are of concern not only in China, but in the U.S.
and other nations as well. NOAA's most recent report on U.S. fisheries
notes that more than 90% of the 4.7 billion pounds of seafood consumed
in the U.S. in 2011 was imported, with shrimp the most popular item.
Moreover, almost half the imports come from aquaculture, with China --
the world's largest aquaculture grower -- producing 32 million metric
tons of cultured seafood in 2008.
In a recent theme issue of the Journal of Invertebrate Pathology, Small,
Shields, and a host of other crustacean-disease experts from across the
globe raise concerns about Hematodinium's growing threat, and its
movement between wild and farmed populations. They note that the
parasite likely entered the Chinese crab and shrimp farms though the
filling of ponds using nearby coastal waters, and caution that it is
just as likely to move in the opposite direction -- with transmission
from the fertile breeding grounds of crowded crab and shrimp ponds back
into wild populations and fisheries.
In a review of Hematodinium's global diversity and distribution --
published as part of the same theme issue -- Small writes "Hematodinium
infections have the potential to significantly impact wild host
crustacean populations and associated fisheries." In another theme-issue
article, Shields notes that Hematodinium may cause more than $500,000
in losses per year to blue crab fishery in Virginia.
Hematodinium most commonly infects younger crabs, with researchers
reporting prevalence levels of 50 to 70% among juvenile blue crabs from
Virginia's seaside bays. "Infections are most prevalent in saltier
waters," says Shields. "You get very high prevalence of infection on the
Eastern Shore, and in coastal bays along the entire East Coast of the
U.S. It affects the smaller fisheries in the coastal bays."
Shields and his colleagues suspect that the parasite also has a
significant indirect impact on the larger blue-crab fishery within
Chesapeake Bay, with untold losses due to the death of young crabs
before they can complete their migration from coastal spawning grounds
into freshwater tributaries where they might otherwise grow big enough
to harvest.
"The crabs have to come through high-salinity waters as juveniles," says
Shields, "where we find a very high prevalence of the disease. We
suspect that Hematodinium induces a fairly high mortality load on the
juvenile crabs as they are moving into the Bay. Imagine a harvest with
50% more crabs and the effect of the parasite becomes quite clear."
Recent laboratory experiments by Shields and graduate student Anna
Coffey help explain the parasite's inability to survive in fresher
waters. Their findings, reported in the June issue of the Journal of
Parasitology, show that Hematodinium can develop within the body tissues
of blue crabs living in low-salinity conditions, but that the
parasite's spores are incapable of transmission in this environment.
"Infected crabs can move into low-salinity waters," says Shields, "but
any parasites they release can't survive long enough to infect new crab
hosts."
Knowledge of Hematodinium's life cycle and routes of transmission
suggests several preventive measures to reduce the parasite's impact on
aquaculture operations and wild fisheries.
"Most of our recommendations for the wild fishery involve changes in
capture and processing methods," says Shields. "There are low-cost
preventative measures to not only stop the spread of disease but to
improve the harvest from the soft-shell industry."
Measures to prevent the spread of Hematodinium and other crustacean
diseases in aquaculture include isolating ponds from nearby water
bodies, stocking ponds with larvae from disease-free hatcheries or from
adult crustaceans that have been certified as disease-free, educating
farmers about best-management practices, and avoiding the practice of
rearing several species together in a single pond, which can encourage
transmission of parasites between susceptible crustaceans.
The next frontier in Hematodinium research -- under active pursuit at
VIMS with collaborator Professor Kim Reece -- is to improve
understanding of the parasite's genetics, so that researchers can more
accurately and quickly distinguish between related species and track
their interactions as they spread and mingle via ocean currents, natural
movements of their hosts, and human activities such as shipping and
aquaculture.
"It's difficult to tell different species of Hematodinium apart based
just on their external appearance," says Small. "Genetic tools will
allow us to more readily compare characteristics like virulence,
transmission routes, and potential hosts among different isolates or
species."
"The combination of genetic tools with life-cycle studies will make for a
powerful approach to understanding this group of parasites," says
Shields.